If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2-19x-26=0
a = -3; b = -19; c = -26;
Δ = b2-4ac
Δ = -192-4·(-3)·(-26)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-7}{2*-3}=\frac{12}{-6} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+7}{2*-3}=\frac{26}{-6} =-4+1/3 $
| (-7g)-(-6g)+4g=-9 | | 24=4(2x–5) | | -8p^2-31p+4=0 | | 9x-7=-6x+8 | | -x+3x-4=0 | | -1+2r=9+3r | | x^2+(x^2+34x+289)=25^2 | | 9z-(-12z)+(-6z)=-15 | | x+19.46=245.3 | | 2x/3+2=-4 | | 4x+136=11x-11 | | 2x+3x-4=2x+8 | | 18x15=72 | | -6k=-8-7k | | 6x^2=69 | | 2/5=4/5y | | 6=x+1/2 | | -5+5h=4h | | 2(3m–4)=16 | | -4(3x+1)+3(x-2)=-1 | | 0.11x=5 | | -5j=-4j-9 | | 11=(b-3) | | -8p^2-3p+4=0 | | (2b-5)+b+b(b+80)=983 | | 2x+7-4x=19 | | 7=84g | | k/325=4 | | 6a=-a+35 | | (-23a+17a)-15+a=7+8a-(6-16) | | 4(2d-8)+5=3(d+1) | | -4(y-2)=20 |